3.4.40 \(\int \frac {a+a \tan (e+f x)}{(d \tan (e+f x))^{3/2}} \, dx\) [340]

3.4.40.1 Optimal result
3.4.40.2 Mathematica [C] (verified)
3.4.40.3 Rubi [A] (verified)
3.4.40.4 Maple [B] (verified)
3.4.40.5 Fricas [A] (verification not implemented)
3.4.40.6 Sympy [F]
3.4.40.7 Maxima [A] (verification not implemented)
3.4.40.8 Giac [F(-1)]
3.4.40.9 Mupad [B] (verification not implemented)

3.4.40.1 Optimal result

Integrand size = 23, antiderivative size = 74 \[ \int \frac {a+a \tan (e+f x)}{(d \tan (e+f x))^{3/2}} \, dx=\frac {\sqrt {2} a \text {arctanh}\left (\frac {\sqrt {d}+\sqrt {d} \tan (e+f x)}{\sqrt {2} \sqrt {d \tan (e+f x)}}\right )}{d^{3/2} f}-\frac {2 a}{d f \sqrt {d \tan (e+f x)}} \]

output
a*arctanh(1/2*(d^(1/2)+d^(1/2)*tan(f*x+e))*2^(1/2)/(d*tan(f*x+e))^(1/2))*2 
^(1/2)/d^(3/2)/f-2*a/d/f/(d*tan(f*x+e))^(1/2)
 
3.4.40.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.14 (sec) , antiderivative size = 64, normalized size of antiderivative = 0.86 \[ \int \frac {a+a \tan (e+f x)}{(d \tan (e+f x))^{3/2}} \, dx=-\frac {(1+i) a \left (\operatorname {Hypergeometric2F1}\left (-\frac {1}{2},1,\frac {1}{2},-i \tan (e+f x)\right )-i \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},1,\frac {1}{2},i \tan (e+f x)\right )\right )}{d f \sqrt {d \tan (e+f x)}} \]

input
Integrate[(a + a*Tan[e + f*x])/(d*Tan[e + f*x])^(3/2),x]
 
output
((-1 - I)*a*(Hypergeometric2F1[-1/2, 1, 1/2, (-I)*Tan[e + f*x]] - I*Hyperg 
eometric2F1[-1/2, 1, 1/2, I*Tan[e + f*x]]))/(d*f*Sqrt[d*Tan[e + f*x]])
 
3.4.40.3 Rubi [A] (verified)

Time = 0.34 (sec) , antiderivative size = 77, normalized size of antiderivative = 1.04, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {3042, 4012, 3042, 4015, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a \tan (e+f x)+a}{(d \tan (e+f x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {a \tan (e+f x)+a}{(d \tan (e+f x))^{3/2}}dx\)

\(\Big \downarrow \) 4012

\(\displaystyle \frac {\int \frac {a d-a d \tan (e+f x)}{\sqrt {d \tan (e+f x)}}dx}{d^2}-\frac {2 a}{d f \sqrt {d \tan (e+f x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {a d-a d \tan (e+f x)}{\sqrt {d \tan (e+f x)}}dx}{d^2}-\frac {2 a}{d f \sqrt {d \tan (e+f x)}}\)

\(\Big \downarrow \) 4015

\(\displaystyle -\frac {2 a^2 \int \frac {1}{\cot (e+f x) (a d+a \tan (e+f x) d)^2-2 a^2 d^2}d\frac {a d+a \tan (e+f x) d}{\sqrt {d \tan (e+f x)}}}{f}-\frac {2 a}{d f \sqrt {d \tan (e+f x)}}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {\sqrt {2} a \text {arctanh}\left (\frac {a d \tan (e+f x)+a d}{\sqrt {2} a \sqrt {d} \sqrt {d \tan (e+f x)}}\right )}{d^{3/2} f}-\frac {2 a}{d f \sqrt {d \tan (e+f x)}}\)

input
Int[(a + a*Tan[e + f*x])/(d*Tan[e + f*x])^(3/2),x]
 
output
(Sqrt[2]*a*ArcTanh[(a*d + a*d*Tan[e + f*x])/(Sqrt[2]*a*Sqrt[d]*Sqrt[d*Tan[ 
e + f*x]])])/(d^(3/2)*f) - (2*a)/(d*f*Sqrt[d*Tan[e + f*x]])
 

3.4.40.3.1 Defintions of rubi rules used

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4012
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)]), x_Symbol] :> Simp[(b*c - a*d)*((a + b*Tan[e + f*x])^(m + 1)/ 
(f*(m + 1)*(a^2 + b^2))), x] + Simp[1/(a^2 + b^2)   Int[(a + b*Tan[e + f*x] 
)^(m + 1)*Simp[a*c + b*d - (b*c - a*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a 
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && LtQ[m, -1 
]
 

rule 4015
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_ 
)]], x_Symbol] :> Simp[-2*(d^2/f)   Subst[Int[1/(2*c*d + b*x^2), x], x, (c 
- d*Tan[e + f*x])/Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && 
 EqQ[c^2 - d^2, 0]
 
3.4.40.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(292\) vs. \(2(61)=122\).

Time = 0.68 (sec) , antiderivative size = 293, normalized size of antiderivative = 3.96

method result size
derivativedivides \(\frac {a \left (-\frac {2}{d \sqrt {d \tan \left (f x +e \right )}}+\frac {\frac {\left (d^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {d \tan \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \tan \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 d}-\frac {\sqrt {2}\, \left (\ln \left (\frac {d \tan \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \tan \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 \left (d^{2}\right )^{\frac {1}{4}}}}{d}\right )}{f}\) \(293\)
default \(\frac {a \left (-\frac {2}{d \sqrt {d \tan \left (f x +e \right )}}+\frac {\frac {\left (d^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {d \tan \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \tan \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 d}-\frac {\sqrt {2}\, \left (\ln \left (\frac {d \tan \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \tan \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 \left (d^{2}\right )^{\frac {1}{4}}}}{d}\right )}{f}\) \(293\)
parts \(\frac {2 a d \left (-\frac {\sqrt {2}\, \left (\ln \left (\frac {d \tan \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \tan \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 d^{2} \left (d^{2}\right )^{\frac {1}{4}}}-\frac {1}{d^{2} \sqrt {d \tan \left (f x +e \right )}}\right )}{f}+\frac {a \left (d^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {d \tan \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \tan \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 f \,d^{2}}\) \(297\)

input
int((a+a*tan(f*x+e))/(d*tan(f*x+e))^(3/2),x,method=_RETURNVERBOSE)
 
output
1/f*a*(-2/d/(d*tan(f*x+e))^(1/2)+2/d*(1/8/d*(d^2)^(1/4)*2^(1/2)*(ln((d*tan 
(f*x+e)+(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)*2^(1/2)+(d^2)^(1/2))/(d*tan(f*x+e 
)-(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)*2^(1/2)+(d^2)^(1/2)))+2*arctan(2^(1/2)/ 
(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)+1)-2*arctan(-2^(1/2)/(d^2)^(1/4)*(d*tan(f 
*x+e))^(1/2)+1))-1/8/(d^2)^(1/4)*2^(1/2)*(ln((d*tan(f*x+e)-(d^2)^(1/4)*(d* 
tan(f*x+e))^(1/2)*2^(1/2)+(d^2)^(1/2))/(d*tan(f*x+e)+(d^2)^(1/4)*(d*tan(f* 
x+e))^(1/2)*2^(1/2)+(d^2)^(1/2)))+2*arctan(2^(1/2)/(d^2)^(1/4)*(d*tan(f*x+ 
e))^(1/2)+1)-2*arctan(-2^(1/2)/(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)+1))))
 
3.4.40.5 Fricas [A] (verification not implemented)

Time = 0.25 (sec) , antiderivative size = 191, normalized size of antiderivative = 2.58 \[ \int \frac {a+a \tan (e+f x)}{(d \tan (e+f x))^{3/2}} \, dx=\left [\frac {\sqrt {2} a \sqrt {d} \log \left (\frac {\tan \left (f x + e\right )^{2} + \frac {2 \, \sqrt {2} \sqrt {d \tan \left (f x + e\right )} {\left (\tan \left (f x + e\right ) + 1\right )}}{\sqrt {d}} + 4 \, \tan \left (f x + e\right ) + 1}{\tan \left (f x + e\right )^{2} + 1}\right ) \tan \left (f x + e\right ) - 4 \, \sqrt {d \tan \left (f x + e\right )} a}{2 \, d^{2} f \tan \left (f x + e\right )}, -\frac {\sqrt {2} a d \sqrt {-\frac {1}{d}} \arctan \left (\frac {\sqrt {2} \sqrt {d \tan \left (f x + e\right )} \sqrt {-\frac {1}{d}} {\left (\tan \left (f x + e\right ) + 1\right )}}{2 \, \tan \left (f x + e\right )}\right ) \tan \left (f x + e\right ) + 2 \, \sqrt {d \tan \left (f x + e\right )} a}{d^{2} f \tan \left (f x + e\right )}\right ] \]

input
integrate((a+a*tan(f*x+e))/(d*tan(f*x+e))^(3/2),x, algorithm="fricas")
 
output
[1/2*(sqrt(2)*a*sqrt(d)*log((tan(f*x + e)^2 + 2*sqrt(2)*sqrt(d*tan(f*x + e 
))*(tan(f*x + e) + 1)/sqrt(d) + 4*tan(f*x + e) + 1)/(tan(f*x + e)^2 + 1))* 
tan(f*x + e) - 4*sqrt(d*tan(f*x + e))*a)/(d^2*f*tan(f*x + e)), -(sqrt(2)*a 
*d*sqrt(-1/d)*arctan(1/2*sqrt(2)*sqrt(d*tan(f*x + e))*sqrt(-1/d)*(tan(f*x 
+ e) + 1)/tan(f*x + e))*tan(f*x + e) + 2*sqrt(d*tan(f*x + e))*a)/(d^2*f*ta 
n(f*x + e))]
 
3.4.40.6 Sympy [F]

\[ \int \frac {a+a \tan (e+f x)}{(d \tan (e+f x))^{3/2}} \, dx=a \left (\int \frac {1}{\left (d \tan {\left (e + f x \right )}\right )^{\frac {3}{2}}}\, dx + \int \frac {\tan {\left (e + f x \right )}}{\left (d \tan {\left (e + f x \right )}\right )^{\frac {3}{2}}}\, dx\right ) \]

input
integrate((a+a*tan(f*x+e))/(d*tan(f*x+e))**(3/2),x)
 
output
a*(Integral((d*tan(e + f*x))**(-3/2), x) + Integral(tan(e + f*x)/(d*tan(e 
+ f*x))**(3/2), x))
 
3.4.40.7 Maxima [A] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 97, normalized size of antiderivative = 1.31 \[ \int \frac {a+a \tan (e+f x)}{(d \tan (e+f x))^{3/2}} \, dx=\frac {a {\left (\frac {\sqrt {2} \log \left (d \tan \left (f x + e\right ) + \sqrt {2} \sqrt {d \tan \left (f x + e\right )} \sqrt {d} + d\right )}{\sqrt {d}} - \frac {\sqrt {2} \log \left (d \tan \left (f x + e\right ) - \sqrt {2} \sqrt {d \tan \left (f x + e\right )} \sqrt {d} + d\right )}{\sqrt {d}}\right )} - \frac {4 \, a}{\sqrt {d \tan \left (f x + e\right )}}}{2 \, d f} \]

input
integrate((a+a*tan(f*x+e))/(d*tan(f*x+e))^(3/2),x, algorithm="maxima")
 
output
1/2*(a*(sqrt(2)*log(d*tan(f*x + e) + sqrt(2)*sqrt(d*tan(f*x + e))*sqrt(d) 
+ d)/sqrt(d) - sqrt(2)*log(d*tan(f*x + e) - sqrt(2)*sqrt(d*tan(f*x + e))*s 
qrt(d) + d)/sqrt(d)) - 4*a/sqrt(d*tan(f*x + e)))/(d*f)
 
3.4.40.8 Giac [F(-1)]

Timed out. \[ \int \frac {a+a \tan (e+f x)}{(d \tan (e+f x))^{3/2}} \, dx=\text {Timed out} \]

input
integrate((a+a*tan(f*x+e))/(d*tan(f*x+e))^(3/2),x, algorithm="giac")
 
output
Timed out
 
3.4.40.9 Mupad [B] (verification not implemented)

Time = 5.86 (sec) , antiderivative size = 84, normalized size of antiderivative = 1.14 \[ \int \frac {a+a \tan (e+f x)}{(d \tan (e+f x))^{3/2}} \, dx=-\frac {2\,a}{d\,f\,\sqrt {d\,\mathrm {tan}\left (e+f\,x\right )}}+\frac {{\left (-1\right )}^{1/4}\,a\,\mathrm {atan}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {d\,\mathrm {tan}\left (e+f\,x\right )}}{\sqrt {d}}\right )\,\left (-1-\mathrm {i}\right )}{d^{3/2}\,f}+\frac {{\left (-1\right )}^{1/4}\,a\,\mathrm {atanh}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {d\,\mathrm {tan}\left (e+f\,x\right )}}{\sqrt {d}}\right )\,\left (1-\mathrm {i}\right )}{d^{3/2}\,f} \]

input
int((a + a*tan(e + f*x))/(d*tan(e + f*x))^(3/2),x)
 
output
((-1)^(1/4)*a*atanh(((-1)^(1/4)*(d*tan(e + f*x))^(1/2))/d^(1/2))*(1 - 1i)) 
/(d^(3/2)*f) - ((-1)^(1/4)*a*atan(((-1)^(1/4)*(d*tan(e + f*x))^(1/2))/d^(1 
/2))*(1 + 1i))/(d^(3/2)*f) - (2*a)/(d*f*(d*tan(e + f*x))^(1/2))